/tmp/eciem.jpg
Phương pháp tính khoảng cách giữa đường thẳng và mặt phẳng song song
Cho đường thẳng d // (P); để tính khoảng cách giữa d và (P) ta thực hiện các bước:
+ Bước 1: Chọn một điểm A trên d, sao cho khoảng cách từ A đến (P) có thể được xác định dễ nhất.
+ Bước 2: Kết luận: d(d; (P)) = d(A; (P)).
Cùng Top lời giải tìm hiểu chi tiết hơn về đường thẳng và mặt phẳng song song cùng các dạng bài tập nhé:
Nội dung bài viết
Một đường thẳng và một mặt phẳng gọi là song song với nhau nếu chúng không có điểm chung
Định lí 1:
Nếu đường thẳng d không nằm trên mặt phẳng (P) và song song với một đường thẳng nào đó nằm trên (P) thì d song song với (P).
Định lí 2:
(Định lí giao tuyến 2). Nếu đường thẳng d song song với mặt phẳng (P) thì mọi mặt phẳng chứa d mà cắt (P) thì cắt theo giao tuyến song song với d.
Hệ quả 1: Nếu một đường thẳng song song với một mặt phẳng thì nó song song với một đường thẳng nào đó trong mặt phẳng.
Hệ quả 2: Nếu hai mặt phẳng cắt nhau cùng song song với một đường thẳng thì giao tuyến của chúng cũng song song với đường thẳng đó.
Định lí 3:
Nếu a b là hai đường thẳng chéo nhau thì có một và chỉ một mặt phẳng chứa a và song song với b.
Định lí 4:
Nếu a, b là hai đường thẳng chéo nhau và O là một điểm không nằm trên cả hai đường thẳng a và b thì có một và chỉ một mặt phẳng đi qua O và song song với cả hai đường thẳng a, b.
Dạng 1:
Chứng minh đường thẳng song song mặt phẳng. Phương pháp: Chứng minh đường thẳng d không nằm trên mặt phẳng (P) và d song song với một đường thẳng a chứa trong (P) Chú ý: Đường thẳng a phải là đường thẳng đồng phẳng với d, do đó nếu trong hình không có sẵn đường thẳng nào chứa trong (P) và đồng phẳng với d thì khi đó ta chọn một mặt phẳng chứa d và dựng giao tuyến a của mặt phẳng đó với (P) rồi chứng minh d // a.
Dạng 2:
Thiết diện song song đường thẳng cho trước Sử dụng định lí giao tuyến 2: “Nếu đường thẳng d song song với mặt phẳng (P) thì mọi mặt phẳng chứa d mà cắt (P) thì cắt theo giao tuyến song song với d” để tìm các đoạn giao tuyến của (P) với các mặt của hình chóp.
Ví dụ 1: Cho hình chóp S. ABCD có SA ⊥ (ABCD), đáy ABCD là hình thang vuông tại A và B; AB = a. Gọi I và J lần lượt là trung điểm của AB và CD. Tính khoảng cách giữa đường thẳng IJ và (SAD)
Hướng dẫn giải:
Chọn C
Ta có: I và J lần lượt là trung điểm của AB và CD nên IJ là đường trung bình của hình thang ABCD
Ví dụ 2: Cho hình chóp O.ABC có đường cao OH = 2a/√3 . Gọi M và N lần lượt là trung điểm của OA và OB. Khoảng cách giữa đường thẳng MN và (ABC) bằng:
Ví dụ 3: Cho hình chóp tứ giác đều S.ABCD có AB = SA = 2a . Khoảng cách từ đường thẳng AB đến (SCD) bằng bao nhiêu?
Hướng dẫn giải
Gọi O là giao điểm của AC và BD; gọi I và M lần lượt là trung điểm cạnh AB và CD. Khi đó; IM // AD //BC
Do S.ABCD là hình chóp tứ giác đều có O là tâm của hình vuông nên SO ⊥ (ABCD) .
+ Do tam giác SAB là đều cạnh 2a
Đáp án D
Câu 1: Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Biết hai mặt bên (SAB) và (SAD) cùng vuông góc với mặt phẳng đáy và SA = a√2. Gọi E là trung điểm AD. Khoảng cách giữa AB và (SOE) là
Bài giải:
+ Vì hai mặt bên (SAB) và (SAD) cùng vuông góc với mặt phẳng đáy .
mà (SAB) ∩ (SAD) = SA
⇒ SA ⊥ (ABCD) .
+ Do E là trung điểm của AD khi đó
Tam giác ABD có EO là đường trung bình
⇒ EO // AB ⇒ AB // (SOE)
⇒ d(AB, (SOE)) = d(A; (SOE)) = AH
với H là hình chiếu của A lên SE.
Câu 2: Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và ∠ABC = 60° Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy, góc giữa hai mặt phẳng (SAB) và (ABCD) bằng 30°. Khoảng cách giữa hai đường thẳng CD và (SAB) theo a bằng:
Bài giải:
Gọi O là giao điểm của AC và BD
Kẻ: OI ⊥ AB; OH ⊥ SI
+ Do CD // AB nên CD // (SAB)
⇒ d(CD, (SAB)) = d(C; (SAB)) = 2d( O; (SAB))
Ta có: AB ⊥ SO , AB ⊥ OI ⇒ AB ⊥ (SOI) ⇒ AB ⊥ OH
Nên OH ⊥ (SAB) ⇒ d(O, (SAB)) = OH
Mà tam giác ACB cân tại B có ∠ABC = 60° nên tam giác ABC đều
⇒ OC = (1/2)AC = (1/2)AB = a/2 .
+ xét tam giác OAB có:
Chọn đáp án B.
Câu 3: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B; AB= a cạnh bên SA vuông góc với đáy và SA = a√2. Gọi M và N lần lượt là trung điểm của AB; AC. Khoảng cách giữa BC và (SMN) bằng bao nhiêu?
Bài giải:
+ Tam giác ABC có MN là đường trung bình nên MN // BC
⇒ BC // (SMN) nên :
d(BC; (SMN)) = d(B; (SMN)) = d(A; (SMN))
Gọi H là hình chiếu vuông góc của A trên đoạn SM.
+ Ta chứng minh: MN ⊥ (SAM):
Chọn đáp án A