/tmp/yneae.jpg
Bài 27 (trang 22 SGK Toán 8 tập 2)
Giải các phương trình:
Lời giải:
a) Điều kiện xác định: x ≠ -5.
2x – 5 = 3(x + 5)
⇔ 2x – 5 = 3x + 15
⇔ -5 – 15 = 3x – 2x
⇔ x = -20 (thỏa mãn điều kiện xác định).
Vậy phương trình có tập nghiệm S = {-20}.
b) Điều kiện xác định: x ≠ 0.
2(x2 – 6) = 2x2 + 3x
⇔ 2x2 – 12 – 2x2 – 3x = 0
⇔ 3x = 12
⇔ x = 4 (Thỏa mãn đkxđ).
Vậy phương trình có tập nghiệm S = {4}.
c) Điều kiện xác định: x ≠ 3.
⇔ x2 + 2x – (3x + 6) = 0
⇔ x(x + 2) – 3(x + 2) = 0
⇔ (x – 3)(x + 2) = 0
⇔ x – 3 = 0 hoặc x + 2 = 0
+ x – 3 = 0 ⇔ x = 3 (Không thỏa mãn đkxđ)
+ x + 2 = 0 ⇔ x = -2 (Thỏa mãn đkxđ).
Vậy phương trình có tập nghiệm S = {-2}.
d) Điều kiện xác định: x ≠ -2/3.
⇔ 5 = (2x – 1)(3x + 2)
⇔ 2x.3x – 3x.1 + 2x.2 – 2.1 = 5
⇔ 6x2 – 3x + 4x – 2 = 5
⇔ 6x2 + x – 7 = 0.
⇔ 6x2 – 6x + 7x – 7 = 0
(Tách để phân tích vế trái thành nhân tử)
⇔ 6x(x – 1) + 7(x – 1) = 0
⇔ (6x + 7)(x – 1) = 0
⇔ 6x + 7 = 0 hoặc x – 1 = 0
+ 6x + 7 = 0 ⇔ 6x = – 7 ⇔ x = -7/6 (thỏa mãn đkxđ)
+ x – 1 = 0 ⇔ x = 1 (thỏa mãn đkxđ).
Vậy phương trình có tập nghiệm:
Tham khảo toàn bộ: Giải Toán 8