/tmp/zpnwy.jpg
Bài 10 trang 114 SGK Hình học 11
Cho hình chóp tứ giác đều S.ABCD có các cạnh bên và các cạnh đáy đều bằng a. Gọi O là tâm của hình vuông ABCD.
a) Tính độ dài đoạn SO.
b) Gọi M là trung điểm của đoạn SC. Chứng minh hai mặt phẳng (MBD) và (SAC) vuông góc với nhau.
c) Tính độ dài đoạn OM và tính góc giữa hai mặt phẳng (MBD) và (ABCD).
Lời giải
Hướng dẫn
a) Áp dụng định lý Pi-ta-go cho tam giác vuông.
b) Chứng minh BD ⊥ (SAC) và sử dụng lý thuyết: Nếu một đường thẳng vuông góc với một phẳng thì mọi mặt phẳng chứa đường thẳng này đều vuông góc mặt phẳng kia.
c) Góc giữa hai mặt phẳng bằng góc giữa hai đường thẳng lần lượt nằm trong hai mặt phẳng và vuông góc với giao tuyến.
a) Theo giả thiết, S.ABCD là hình chóp đều nên ( tính chất hình chóp đều)
Đáy ABCD là hình vuông cạnh a nên
=> Góc giữa hai mặt phẳng (MBD) và (ABCD) là 45o
Xem toàn bộ Giải Toán 11: Bài 4. Hai mặt phẳng vuông góc